

V Semester B.A./B.Sc. Examination, Nov./Dec. 2018 (Semester Scheme) (Repeaters – Prior to 2016-17) (NS – 2013-14 and Onwards) Mathematics MATHEMATICS – VI

Time: 3 Hours

Max. Marks: 100

Instruction: Answer all questions.

I. Answer any fifteen questions:

(15×2=30)

- 1) Solve (y + z) dx + (z + x) dy + (x + y) dz = 0.
- 2) Verify the condition for integrability $3x^2 dx + 3y^2 dy (x^3 + y^3 + e^{2z}) dz = 0$.
- 3) Form the partial differential equation by eliminating the arbitrary function from $Z = f(x^2 + v^2)$.
- 4) Solve $\sqrt{p} + \sqrt{q} = 1$.

- 5) Solve $z px qy = 2\sqrt{pq}$.
- 6) Solve $[D^2 4DD' + 4(D')^2]Z = 0$.
- 7) Obtain the expression for P₂(x) using Rodrigues' formula.
- 8) Express $1 + 2x 3x^2$ in a series of Legendre polynomials.
- 9) Show that $J_n(-x) = (-1)^n J_n(x)$.
- 10) Prove that $J_0'(x) = -J_1(x)$.
- 11) Write the Bessel's differential equation.
- 12) Evaluate ∆ (logx).
- 13) Prove that $E \Delta = \Delta E$.
- 14) Express the polynomial $x^2 + x + 1$ as a factorial polynomial (taking h = 1).
- 15) Write the Newton Gregory backward interpolation formula.
- 16) Write the formula for Simpson's 3/8th rule.
- 17) Define mathematical modelling and give an example.
- 18) How long does it take for a given amount of money to double at 10% per annum compounded annually?
- 19) In the case of modelling of projectile motion without air resistance write the expression for time of flight.
- 20) What are the assumptions to be made in getting a partial differential equation model for a vibrating string?

(4×5=20)

II. Answer any four questions :

 Verify the condition for integrability and solve $(2x^2 + 2xy + 2xz^2 + 1) dx + dy + 2zdz = 0.$

- 2) Solve $\frac{dx}{x^2 yz} = \frac{dy}{y^2 zx} = \frac{dz}{z^2 xy}$.

 3) Form a partial differential equation by eliminating the function ϕ from
- 4) Solve by Charpit's method px + qy = pq.

5) Solve $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} = \sin x$.

6) Reduce $\frac{\partial^2 z}{\partial x^2} + x^2 \frac{\partial^2 z}{\partial y^2} = 0$ to a canonical form.

Solve $p + q = \sin x + \sin y$.

BMSCW

 $(3 \times 5 = 15)$

III. Answer any three questions :

- 1) Prove that $\frac{1-t^2}{\left(1-2xt+t^2\right)^{3/2}} = \sum_{n=0}^{\infty} (2n+1) P_n(x) t^n.$
- 2) Prove that $\int_{-1}^{1} P_m(x) P_n(x) dx = 0$ if $m \neq n$.
- 3) Prove that $P_n(-x) = (-1)^n P_n(x)$.
- 4) Prove the following:
 - a) $\cos(x\sin\theta) = J_0(x) + 2 \sum_{1}^{\infty} J_{2n}(x) \cos 2n\theta$
 - b) $\sin(x\sin\theta) = 2\sum_{1}^{\infty} J_{2n-1}(x)\sin[(2n-1)\theta]$.
- 5) Prove that $J_{n+1}(x) + J_{n-1}(x) = \frac{2n}{x} J_n(x)$.

IV. Answer any four questions:

 $(4 \times 5 = 20)$

- 1) Given $y_3 = 2$, $y_4 = -6$, $y_5 = 8$, $y_6 = 9$, $y_7 = 17$, calculate $\Delta^4 y_3$.
- 2) Find a polynomial which takes the values :

	3	4	5		HOUSE BY 183
У	6	24	00	6	7
sing Newto	on Care	AL AL	olation formul	120	210

using Newton-Gregory forward interpolation formula.

3) By the method of separation of symbols prove that

 $u_0 - u_1 + u_2 - u_3 + \dots = \frac{1}{2}u_0 - \frac{1}{4}\Delta u_0 + \frac{1}{8}\Delta^2 u_0 - \dots$

4) Find the value of f(10) from the data using Newton's divided difference

٨	5	6		
f(v)	40	0	9	11
1(V)	12	13	1.4	

5) Find $\frac{dy}{dx}$ at x = 54 from the following table :

X	50	51	50		
V	2 0040	- 01	52	53	54
у	3.6840	3.7084	3.7325	3.7563	3.7798

- 6) Evaluate $\int_{-\infty}^{2} \frac{dx}{x}$ using Simpson's $1/3^{rd}$ rule taking four subintervals.
- V. Answer any three questions:
 - $(3 \times 5 = 15)$ 1) In a culture the bacteria count is 1,00,000. The number is included by 10% in 2 hours. In how many hours will it cross 2,00,000 if the rate of growth of bacteria is proportional to the number present?
 - 2) Uranium disintegrates at a rate proportional to the amount present at any instant. If m_1 and m_2 grams of uranium are present at time t_1 and t_2 . Show

that half life of uranium is $\frac{(t_1 - t_2) \log 2}{\log \binom{m_1}{m_2}}.$

- 3) A generator having e.m.f. 100 V is connected in series with 20 Ω resistor and inductor of 4 H. Determine the current if i(0) = 0. Find i for t = 0.2 sec.
- 4) From the differential equation of the free damped motion in the case of mass-spring-dashpot and discuss:
 - i) Over damped and
 - ii) Critically damped cases.
- 5) A projectile when thrown at an angle tan-1 (3/4) falls 40 metres short of the target. When it is fired at an angle of 45°, it falls 50 m beyond the target. Find the distance of the target from the point of projection.